A review on electrical and mechanical performance parameters in lithium-ion battery packs

نویسندگان

چکیده

Lithium-ion batteries are the most prominent power source for electric vehicles. The continues use at different environmental conditions demand accurate electrical and mechanical functionality. Most of research paper published provide information to describe these covering only one or a very few parameters. It leaves aside holistic comprehensive study evaluate performance in lithium-ion battery packs. This review presents more than ten parameters with experiments theory undertaken understand influence on performance, integrity, safety However, when reviewed, it is concluded, that vibration temperature critically affect inherent operation conditions. Through present work, was found limited literature exist clearly define vibration. Therefore, still needs thermo-mechanical coupled loads performance. concluded fundamental perform mentioned improve pack safety. In addition, proposes an innovative technical solution automotive industry can be novel contribution academia.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle

Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...

متن کامل

Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage propertie...

متن کامل

Studying lithium-ion battery packs cooling system using water-nanofluids composition

In this study, the Li-ion batteries temperature increase during the discharge process was measured empirically and evaluated using numerical simulation. Moreover, the battery packs cooling using the water, air and water-nano composition fluids such as water-alumina, water-copper oxide, and water-gold was studied through numerical simulation. Accordingly, the battery cooling was simulated by CFD...

متن کامل

Effects of Electrical Contact Resistance on External Energy Losses in Lithium-ion Battery Packs for Hybrid and Electric Vehicles

Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and currentcollector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections and acts...

متن کامل

A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles

This paper focuses on state of charge (SOC) estimation for the battery packs of electric vehicles (EVs). By modeling a battery based on the equivalent circuit model (ECM), the adaptive extended Kalman filter (AEKF) method can be applied to estimate the battery cell SOC. By adaptively setting different weighed coefficients, a battery pack SOC estimation algorithm is established based on the sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Cleaner Production

سال: 2022

ISSN: ['0959-6526', '1879-1786']

DOI: https://doi.org/10.1016/j.jclepro.2022.134381